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A set of Maple procedures and fortran subroutines
that can be used to build complete simula t ion
codes for partial differential equations, with the
entire problem definition done in Maple.

www.mech.kth.se/~gustava

Amberg, G., Tönhardt, R, and Winkler, C. (1999) ‘Finite Element
simulations using symbolic computing’, Mathematics and
Computers in Simulation, 4 9, pp. 149-165

femLego
Numerical Simulation by
Symbolic Computation
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Outline

•Some applications

•The Finite Element Method

•A simple example

•Try it yourself! 
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Phase field model
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Fluid mechanics

Fluid flow past a cylinder
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Welding

Melt flow
Electromagnetic forces
Phase change
Heat and mass transfer
+ more 

Electrode

(Christian Winkler, Minh Do-Quang)
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Need to do such simulations

Systems of nonlinear PDEs:
time dependent
(1), 2 or 3 spatial dimensions

Our priorities are, in this order:

•Immediate access to the model

•Access to the numerics

•Numerical efficiency, speed
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Finite Elements

The strategy is:

•Finite Elements
•Unstructured grids
•Finite differences in time.

One reason is that finite elements on unstructured
grids can be formulated as one simple algorithm,
regardless of what element is used, number of spatial
dimensions, etc.

Unstructured meshes allow adaptivity.
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Simple example
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To solve this by Finite Elements:

v f= on S1

• time derivative -> finite
difference.

• Project onto a test
function

• Integrate partially
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To solve this by Finite Elements:

v f= on S1

• time derivative -> finite
difference.

• Project onto a test
function

• Integrate partially

• Express the unknown in
the N base functions

• Evaluate the integrals
for all N independent
test functions ->
System for node values
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To solve this by Finite Elements:

v f= on S1

• time derivative -> finite
difference.

• Project onto a test
function

• Integrate partially

• Express the unknown in
the N base functions

• Evaluate the integrals
for all N independent
test functions ->
System for node values
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Supplied by user

Done symbo lically
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The Finite Elements

The most obvious examples of finite elements, i.e. base functions , are
piecewise linear functions:

1D: piecewise
linear in intervals

2D: piecewise
linear in triangles

3D: piecewise
linear in
tetrahedrons

An element is defined by a separate file
of Maple procedures.

The user chooses element by supplying
the corresponding filename as input to
the code generation.

Modular, easy to change.
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Simple example
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FEM form:
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In Maple:
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Other tools: Tensor and vector notation.

&t   implements the Einstein summation convention:

The nabla operator:

Partial integration, taking the variation, etc...



16

Other commands needed to build a complete solver

* Specify Dirichlet boundary
condit ions:

mkDirBC( [u(x,y) = sin(x) ], ... );

* Initial conditions:

mkICcopy( [u(x,y) = x^2 + y^2], ... );

* Specify how to read input (mesh
etc):

getFemLabInput( [Reynold,Prandtl, .. ] );

* Specify how to save output:

AVSplotP1([u(x,y),v(x,y)]);

* Specify linear algebra solvers:

mkSolve([iccg,gmres],[eq1,eq2]);

* Create the core of the program:

mkFem([eq1,eq2],[u(x,y),v(x,y)], ... );
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a.out:
Maple generated fortran
Linear algebra package
i/o etc

Mesh
from FEMLAB
or other

Input parametersMesh
from FEMLAB
or other

Mesh
from FEMLAB
or other

output
files

out1.d
out2.d
.

view using
FEMLAB
AVS...

When all problem
dependent parts
have been
generated in
Maple, the code is
compiled and run
as usual.

Rely on other
applications for
pre- and
postprocessing
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Get started:

Open www.mech.kth.se/~gustava/femLego

Notice ’commands’ and ’Examples’

Get a copy

Step through ’little_example’

See how contents of ./source changes
compile and run

Try one of the other examples, modify the
examples or try some other problem
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To get a copy:

Download and unpack files (see webpage)

Copy init file for Maple:
cp femLego_dist/.mapleinit ~

Find or install linear algebra lib, set environment var.
setenv SLAP_LIB $HOME/lib
(or put in ~/.cshrc)

Go to the directory you want to work in, start Maple:
cd little_example
xmaple example.mws &
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Suggested modifications

• Add distributed heat source to little_example or

3D_example.

• Add a nonlinear diffusion coefficient to little_example or

3D_example.

• Add adaptivity to little_example.

• Put in your favorite PDE.


